
EECS 252 Graduate Computer
Architecture

Lec 1 - Introduction

David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://www-inst.eecs.berkeley.edu/~cs252

1/21/2006 CS252-s06, Lec 01-intro 2

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• How would you like your CS252?
• What Computer Architecture brings to table

1/21/2006 CS252-s06, Lec 01-intro 3

• Old Conventional Wisdom: Power is free, Transistors expensive
• New Conventional Wisdom: “Power wall” Power expensive, Xtors free

(Can put more on chip than can afford to turn on)
• Old CW: Sufficiently increasing Instruction Level Parallelism via

compilers, innovation (Out-of-order, speculation, VLIW, …)
• New CW: “ILP wall” law of diminishing returns on more HW for ILP
• Old CW: Multiplies are slow, Memory access is fast
• New CW: “Memory wall” Memory slow, multiplies fast

(200 clock cycles to DRAM memory, 4 clocks for multiply)
• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

– Uniprocessor performance now 2X / 5(?) yrs

⇒ Sea change in chip design: multiple “cores”
(2X processors per chip / ~ 2 years)
» More simpler processors are more power efficient

Crossroads: Conventional Wisdom in Comp. Arch

1/21/2006 CS252-s06, Lec 01-intro 4

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Crossroads: Uniprocessor Performance

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

1/21/2006 CS252-s06, Lec 01-intro 5

Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)

1/21/2006 CS252-s06, Lec 01-intro 6

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
• “… today’s processors … are nearing an impasse as

technologies approach the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004)
• Difference is all microprocessor companies switch to

multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs
⇒ Biggest programming challenge: 1 to 2 CPUs

1/21/2006 CS252-s06, Lec 01-intro 7

Problems with Sea Change

• Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, … not
ready to supply Thread Level Parallelism or Data
Level Parallelism for 1000 CPUs / chip,

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by just by

computer architects and compiler writers alone, but also cannot
be solved without participation of computer architects

• This edition of CS 252 (and 4th Edition of textbook
Computer Architecture: A Quantitative Approach)
explores shift from Instruction Level Parallelism to
Thread Level Parallelism / Data Level Parallelism

1/21/2006 CS252-s06, Lec 01-intro 8

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• How would you like your CS252?
• What Computer Architecture brings to table

1/21/2006 CS252-s06, Lec 01-intro 9

Instruction Set Architecture: Critical Interface

instruction set

software

hardware

• Properties of a good abstraction
– Lasts through many generations (portability)
– Used in many different ways (generality)
– Provides convenient functionality to higher levels
– Permits an efficient implementation at lower levels

1/21/2006 CS252-s06, Lec 01-intro 10

Example: MIPS
0r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage
2^32 x bytes
31 x 32-bit GPRs (R0=0)
32 x 32-bit FP regs (paired DP)
HI, LO, PC

Data types ?
Format ?
Addressing Modes?

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

Control
J, JAL, JR, JALR
BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

1/21/2006 CS252-s06, Lec 01-intro 11

Instruction Set Architecture
“... the attributes of a [computing] system as seen by
the programmer, i.e. the conceptual structure and
functional behavior, as distinct from the organization
of the data flows and controls the logic design, and
the physical implementation.”

– Amdahl, Blaauw, and Brooks, 1964
SOFTWARESOFTWARE

-- Organization of Programmable
Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

1/21/2006 CS252-s06, Lec 01-intro 12

ISA vs. Computer Architecture
• Old definition of computer architecture

= instruction set design
– Other aspects of computer design called implementation
– Insinuates implementation is uninteresting or less challenging

• Our view is computer architecture >> ISA
• Architect’s job much more than instruction set

design; technical hurdles today more challenging
than those in instruction set design

• Since instruction set design not where action is,
some conclude computer architecture (using old
definition) is not where action is

– We disagree on conclusion
– Agree that ISA not where action is (ISA in CA:AQA 4/e appendix)

1/21/2006 CS252-s06, Lec 01-intro 13

Comp. Arch. is an Integrated Approach

• What really matters is the functioning of the complete
system

– hardware, runtime system, compiler, operating system, and
application

– In networking, this is called the “End to End argument”

• Computer architecture is not just about transistors,
individual instructions, or particular implementations

– E.g., Original RISC projects replaced complex instructions with a
compiler + simple instructions

1/21/2006 CS252-s06, Lec 01-intro 14

Computer Architecture is
Design and Analysis

Design

Analysis

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas
Mediocre IdeasBad Ideas

Cost /
Performance
Analysis

1/21/2006 CS252-s06, Lec 01-intro 15

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• How would you like your CS252?
• What Computer Architecture brings to table
• Technology Trends

1/21/2006 CS252-s06, Lec 01-intro 16

CS252: Administrivia
Instructor: Prof David Patterson

Office: 635 Soda Hall, pattrsn@cs
Office Hours: Tue 11 - noon or by appt.
(Contact Cecilia Pracher; cpracher@eecs)

T. A: Archana Ganapathi, archanag@eecs
Class: M/W, 11:00 - 12:30pm 203 McLaughlin (and online)
Text: Computer Architecture: A Quantitative Approach, 4th
Edition (Oct, 2006), Beta, distributed for free provided report errors
Web page: http://www.cs/~pattrsn/courses/cs252-S06/

Lectures available online <9:00 AM day of lecture
Wiki page: ??
First reading assignment: Chapter 1 (handout) for today, Monday
Appendix A (handout) A for Wed 1/24

1/21/2006 CS252-s06, Lec 01-intro 17

Typical Class format (after week 2)

• Bring questions to class
• 1-Minute Review
• 20-Minute Lecture
• 5- Minute Administrative Matters
• 25-Minute Lecture/Discussion
• 5-Minute Break (water, stretch)
• 25-Minute Discussion based

on your questions

• I will come to class early to answer questions, can
stay after on Wednesdays

Time

Attention

20 min “And in
conclusion”

1/21/2006 CS252-s06, Lec 01-intro 18

Quizzes
• Preparation causes you to systematize your

understanding
• Reduce the pressure of taking exam

– 2 Graded quizzes: dates TBA
– goal: test knowledge vs. speed writing

» 3 hrs to take 1.5-hr quiz (5:30-8:30 PM, TBA location)
– Both quizzes can bring summary sheet

» Transfer ideas from book to paper

• Students/Faculty meet over free pizza/drinks at La
Val’s after exam

1/21/2006 CS252-s06, Lec 01-intro 19

CS 252 Course Focus

Understanding the design techniques, machine
structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
• Organization
• Hardware/Software Boundary

Compilers

1/21/2006 CS252-s06, Lec 01-intro 20

Your CS252
• Computer architecture is at a crossroads

– Institutionalization and renaissance
– Power, dependability, multi CPU vs. 1 CPU performance

• Mix of lecture vs. discussion
– Depends on how well reading is done before class

• Goal is to learn how to do good systems research
– Learn a lot from looking at good work in the past
– At commit point, you may chose to pursue your own new idea

instead.

1/21/2006 CS252-s06, Lec 01-intro 21

Research Paper Reading

• As graduate students, you are now researchers
• Most information of importance to you will be in

research papers
• Ability to rapidly scan and understand research papers

is key to your success

• So: you will read a few papers in this course
– Quick 1 paragraph summaries and question will be due in class
– Important supplement to book.
– Will discuss papers in class

• Papers will be scanned and on web page

1/21/2006 CS252-s06, Lec 01-intro 22

Related Courses

CS 152CS 152 CS 252CS 252 CS 258CS 258

CS 250CS 250

How to build it
Implementation details

Why, Analysis,
Evaluation

Parallel Architectures,
Languages, Systems

Integrated Circuit Technology
from a computer-organization viewpoint

Strong

Prerequisite

Basic knowledge of the
organization of a computer
is assumed!

1/21/2006 CS252-s06, Lec 01-intro 23

Coping with CS 252
• Undergrads must have taken CS152
• Grad Students with too varied background?

– In past, CS grad students took written prelim exams on
undergraduate material in hardware, software, and theory

– 1st 5 weeks reviewed background, helped 252, 262, 270
– Prelims were dropped => some unprepared for CS 252?

• Grads without CS152 equivalent may have to work
hard; Review: Appendix A, B, C; CS 152 home
page, maybe Computer Organization and Design
(COD) 3/e

– Chapters 1 to 8 of COD if never took prerequisite
– If took a class, be sure COD Chapters 2, 6, 7 are familiar
– I can loan you a copy

• Will spend 2 lectures on review of Pipelining and
Memory Hierarchy, and in class quiz to be sure
everyone is up to speed

1/21/2006 CS252-s06, Lec 01-intro 24

Grading

• 15% Homeworks (work in pairs) and reading
writeups

• 35% Examinations (2 Quizzes)
• 35% Research Project (work in pairs)

– Transition from undergrad to grad student
– Berkeley wants you to succeed, but you need to show initiative
– pick topic (more on this later)
– meet 3 times with faculty to see progress
– give oral presentation or poster session
– written report like conference paper
– 3 weeks work full time for 2 people
– Opportunity to do “research in the small” to help make transition

from good student to research colleague

• 15% Class Participation

1/21/2006 CS252-s06, Lec 01-intro 25

New Project opportunity this semester

• FPGAs as New Research Platform
• As ~ 25 CPUs can fit in Field Programmable

Gate Array (FPGA), 1000-CPU system from
~ 40 FPGAs?

• 64-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)
• FPGA generations every 1.5 yrs; 2X CPUs, 2X clock rate

• HW research community does logic design
(“gate shareware”) to create out-of-the-box,
Massively Parallel Processor runs standard
binaries of OS, apps

– Gateware: Processors, Caches, Coherency, Ethernet
Interfaces, Switches, Routers, … (IBM, Sun have donated
processors)

– E.g., 1000 processor, IBM Power binary-compatible, cache-
coherent supercomputer @ 200 MHz; fast enough for research

1/21/2006 CS252-s06, Lec 01-intro 26

RAMP

• Since goal is to ramp up research in
multiprocessing, called Research
Accelerator for Multiple Processors

– To learn more, read “RAMP: Research
Accelerator for Multiple Processors - A
Community Vision for a Shared Experimental
Parallel HW/SW Platform,” Technical Report
UCB//CSD-05-1412, Sept 2005

– Web page ramp.eecs.berkeley.edu

1/21/2006 CS252-s06, Lec 01-intro 27

Why RAMP Good for Research?

A (1.5 kw,
0.3 racks)

A+ (.1 kw,
0.1 racks)

D (120 kw,
12 racks)

D (120 kw, 12
racks)

Power/Space
(kilowatts, racks)

AAADCommunity

AAACScalability

AADACost of ownership

GPA

Perform. (clock)

Credibility

Flexibility

Reproducibility

Observability

Cost (1000 CPUs)

C

A (2 GHz)

A+

D

B

D

F ($40M)

SMP

B-

A (3 GHz)

A+

C

D

C

C ($2M)

Cluster

B

F (0 GHz)

F

A+

A+

A+

A+ ($0M)

Simulate

A-

C (0.2 GHz)

A

A+

A+

A+

A ($0.1M)

RAMP

1/21/2006 CS252-s06, Lec 01-intro 28

• Completed Dec. 2004 (14x17 inch 22-layer PCB)
• Module:

– FPGAs, memory,
10GigE conn.

– Compact Flash
– Administration/

maintenance
ports:

» 10/100 Enet
» HDMI/DVI
» USB

– ~4K/module w/o
FPGAs or DRAM

RAMP 1 Hardware

Called “BEE2” for Berkeley Emulation Engine 2

1/21/2006 CS252-s06, Lec 01-intro 29

Multiple Module RAMP 1 Systems

• 8 compute modules (plus power
supplies) in 8U rack mount chassis

– 500-1000 emulated processors

• Many topologies possible
• 2U single module tray for developers
• Disk storage: disk emulator + Network

Attached Storage
1/21/2006 CS252-s06, Lec 01-intro 30

Vision: Multiprocessing Watering Hole

• RAMP attracts many communities to shared artifact
⇒ Cross-disciplinary interactions
⇒ Accelerate innovation in multiprocessing

• RAMP as next Standard Research Platform?
(e.g., VAX/BSD Unix in 1980s, x86/Linux in 1990s)

RAMPRAMP

Parallel file system
Thread scheduling

Multiprocessor switch design
Fault insertion to check dependability

Data center in a box
Internet in a box

Dataflow language/computer
Security enhancements

Router design Compile to FPGA
Parallel languages

1/21/2006 CS252-s06, Lec 01-intro 31

Supporters (wrote letters to NSF) & Participants
• Gordon Bell (Microsoft)
• Ivo Bolsens (Xilinx CTO)
• Norm Jouppi (HP Labs)
• Bill Kramer (NERSC/LBL)
• Craig Mundie (MS CTO)
• G. Papadopoulos (Sun CTO)
• Justin Rattner (Intel CTO)
• Ivan Sutherland (Sun Fellow)
• Chuck Thacker (Microsoft)
• Kees Vissers (Xilinx)

• Doug Burger (Texas)
• Bill Dally (Stanford)
• Carl Ebeling (Washington)
• Susan Eggers (Washington)
• Steve Keckler (Texas)
• Greg Morrisett (Harvard)
• Scott Shenker (Berkeley)
• Ion Stoica (Berkeley)
• Kathy Yelick (Berkeley)

RAMP Participants: Arvind (MIT), Krste Asanovíc (MIT),
Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis
(Stanford), Shih-Lien Lu (Intel), Mark Oskin (Washington), David
Patterson (Berkeley), Jan Rabaey (Berkeley), and John Wawrzynek
(Berkeley)

1/21/2006 CS252-s06, Lec 01-intro 32

• RAMP as system-level time machine: preview computers
of future to accelerate HW/SW generations

– Trace anything, Reproduce everything, Tape out every day
– FTP new supercomputer overnight and boot in morning
– Clone to check results (as fast in Berkeley as in Boston?)
– Emulate Massive Multiprocessor, Data Center, or Distributed Computer

• Carpe Diem
– Systems researchers (HW & SW) need the capability
– FPGA technology is ready today, and getting better every year
– Stand on shoulders vs. toes: standardize on multi-year Berkeley effort

on FPGA platform Berkeley Emulation Engine 2 (BEE2)
– Architecture researchers get opportunity to immediately aid

colleagues via gateware (as SW researchers have done in past)
– See ramp.eecs.berkeley.edu

• Vision “Multiprocessor Research Watering Hole” accelerate
research in multiprocessing via standard research platform
⇒ hasten sea change from sequential to parallel computing

RAMP Summary

1/21/2006 CS252-s06, Lec 01-intro 33

RAMP projects for CS 252
• Design a of guest timing accounting strategy

– Want to be able specify performance parameters (clock rate,
memory latency, network latency, …)

– Host must accurately account for guest clock cycles
– Don’t want to slow down host execution time very much

• Build a disk emulator for use in RAMP
– Imitates disk, accesses network attached storage for data
– Modeled after guest VM/driver VM from Xen VM?

• Build a cluster using components from
opencores.org on BEE2

– Open source hardware consortium

• Build an emulator of an “Internet in a Box”
– (Emulab/Planetlab in a box is closer to reality)

1/21/2006 CS252-s06, Lec 01-intro 34

Other projects
• Recreate results from research paper to see

– If they are reproducible
– If they still hold

• Performance evaluation of Niagara, new 8 core, 4
threads per core chip from Sun

• Propose your own research project that is related
to computer architecture

1/21/2006 CS252-s06, Lec 01-intro 35

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• How would you like your CS252?
• What Computer Architecture brings to table

1/21/2006 CS252-s06, Lec 01-intro 36

What Computer Architecture brings to Table
• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in
technology

• Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

1/21/2006 CS252-s06, Lec 01-intro 37

1) Taking Advantage of Parallelism
• Increasing throughput of server computer via

multiple processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative
caches

• Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.

– Not every instruction depends on immediate predecessor ⇒
executing instructions completely/partially in parallel possible

– Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

1/21/2006 CS252-s06, Lec 01-intro 38

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

1/21/2006 CS252-s06, Lec 01-intro 39

Limits to pipelining

• Hazards prevent next instruction from executing
during its designated clock cycle

– Structural hazards: attempt to use the same hardware to do
two different things at once

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

1/21/2006 CS252-s06, Lec 01-intro 40

2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

1/21/2006 CS252-s06, Lec 01-intro 41

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytesBlocks

1/21/2006 CS252-s06, Lec 01-intro 42

3) Focus on the Common Case
• Common sense guides computer design

– Since its engineering, common sense is valuable
• In making a design trade-off, favor the frequent

case over the infrequent case
– E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done

faster than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
– May slow down overflow, but overall performance improved by

optimizing for the normal case
• What is frequent case and how much performance

improved by making case faster => Amdahl’s Law

1/21/2006 CS252-s06, Lec 01-intro 43

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() ⎥
⎦

⎤
⎢
⎣

⎡
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

1/21/2006 CS252-s06, Lec 01-intro 44

Amdahl’s Law example
• New CPU 10X faster
• I/O bound server, so 60% time waiting for I/O

()

()
56.1

64.0
1

10
0.4 0.4 1

1

Speedup
Fraction Fraction 1

1 Speedup

enhanced

enhanced
enhanced

overall

==
+−

=

+−
=

• Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

1/21/2006 CS252-s06, Lec 01-intro 45

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

1/21/2006 CS252-s06, Lec 01-intro 46

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-flight

issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

1/21/2006 CS252-s06, Lec 01-intro 47

And in conclusion …
• Computer Architecture >> instruction sets
• Computer Architecture skill sets are different

– 5 Quantitative principles of design
– Quantitative approach to design
– Solid interfaces that really work
– Technology tracking and anticipation

• CS 252 to learn new skills, transition to research
• Computer Science at the crossroads from

sequential to parallel computing
– Salvation requires innovation in many fields, including

computer architecture

• RAMP is interesting and timely CS 252 project
opportunity given CS is at the crossroads

• Read Chapter 1, then Appendix A, record bugs!

