UltraSPARC T1: A 32-threaded CMP for Servers

James Laudon
Distinguished Engineer
Sun Microsystems
james.laudon@sun.com
Outline

• Server design issues
  > Application demands
  > System requirements

• Building a better server-oriented CMP
  > Maximizing thread count
  > Keeping the threads fed
  > Keeping the threads cool

• UltraSPARC T1 (Niagara)
  > Micro-architecture
  > Performance
  > Power
## Attributes of Commercial Workloads

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Web99</th>
<th>jBOB (JBB)</th>
<th>TPC-C</th>
<th>SAP 2T</th>
<th>SAP 3T DB</th>
<th>TPC-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Category</td>
<td>Web server</td>
<td>Server Java</td>
<td>OLTP</td>
<td>ERP</td>
<td>ERP</td>
<td>DSS</td>
</tr>
<tr>
<td>Instruction-level parallelism</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>med</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Thread-level parallelism</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Instruction/Data working set</td>
<td>large</td>
<td>large</td>
<td>large</td>
<td>med</td>
<td>large</td>
<td>large</td>
</tr>
<tr>
<td>Data sharing</td>
<td>low</td>
<td>med</td>
<td>high</td>
<td>med</td>
<td>high</td>
<td>med</td>
</tr>
</tbody>
</table>

- Adapted from “A Performance methodology for commercial servers,” S. R. Kunkel et al, IBM J. Res. Develop. vol. 44 no. 6 Nov 2000
Commercial Server Workloads

- SpecWeb05, SpecJappserver04, SpecJBB05, SAP SD, TPC-C, TPC-E, TPC-H
- High degree of thread-level parallelism (TLP)
- Large working sets with poor locality leading to high cache miss rates
- Low instruction-level parallelism (ILP) due to high cache miss rates, load-load dependencies, and difficult to predict branches
- Performance is bottlenecked by stalls on memory accesses
- Superscalar and superpipelining will not help much
ILP Processor on Server Application

ILP reduces the compute time and overlaps computation with L2 cache hits, but memory stall time dominates overall performance.

**Processor optimized for ILP**

**Scalar processor**

Time

Memory Latency

Compute

Thread

C M C M C M

Thread

C M C M C M

Time Saved

Compute

Memory Latency

Thread

C M C M C M
Attacking the Memory Bottleneck

- Exploit the TLP-rich nature of server applications
- Replace each large, superscalar processor with multiple simpler, threaded processors
  > Increases core count (C)
  > Increases thread per core count (T)
  > Greatly increases total thread count (C*T)
- Threads share a large, high-bandwidth L2 cache and memory system
- Overlap the memory stalls of one thread with the computation of other threads
TLP Processor on Server Application

TLP focuses on overlapping memory references to improve throughput; needs sufficient memory bandwidth.
Server System Requirements

- Very large power demands
  - Often run at high utilization and/or with large amounts of memory
  - Deployed in dense rack-mounted datacenters
- Power density affects both datacenter construction and ongoing costs
- Current servers consume far more power than state of the art datacenters can provide
  - 500W per 1U box possible
  - Over 20 kW/rack, most datacenters at 5 kW/rack
  - Blades make this even worse...
Server System Requirements

- Processor power is a significant portion of total
  > Database: 1/3 processor, 1/3 memory, 1/3 disk
  > Web serving: 2/3 processor, 1/3 memory
- Perf/watt has been flat between processor generations
- Acquisition cost of server hardware is declining
  > Moore's Law – more performance at same cost or same performance at lower cost
- Total cost of ownership (TCO) will be dominated by power within five years
- The “Power Wall”
Performance/Watt Trends

Source: L. Barroso, *The Price of Performance*, ACM Queue vol 3 no 7
Impact of Flat Perf/Watt on TCO

Source: L. Barroso, *The Price of Performance*, ACM Queue vol 3 no 7
Implications of the “Power Wall”

• With TCO dominated by power usage, the metric that matters is performance/Watt

• Performance/Watt has been mostly flat for several generations of ILP-focused designs
  > Should have been improving as a result of voltage scaling \( fCV^2 + T_\text{LC}V \)
  > \( C, T, I_\text{LC} \) and \( f \) increases have offset voltage decreases

• TLP-focused processors reduce \( f \) and \( C/T \) (per-processor) and can greatly improve performance/Watt for server workloads
Outline

• Server design issues
  > Application demands
  > System requirements

• Building a better server-oriented CMP
  > Maximizing thread count
  > Keeping the threads fed
  > Keeping the threads cool

• UltraSPARC T1 (Niagara)
  > Micro-architecture
  > Performance
  > Power
Building a TLP-focused processor

• Maximizing the total number of threads
  > Simple cores
  > Sharing at many levels

• Keeping the threads fed
  > Bandwidth!
  > Increased associativity

• Keeping the threads cool
  > Performance/watt as a design goal
  > Reasonable frequency
  > Mechanisms for controlling the power envelope
Maximizing the thread count

- Tradeoff exists between large number of simple cores and small number of complex cores
  > Complex cores focus on ILP for higher single thread performance
  > ILP scarce in commercial workloads
  > Simple cores can deliver more TLP

- Need to trade off area devoted to processor cores, L2 and L3 caches, and system-on-a-chip

- Balance performance and power in all subsystems: processor, caches, memory and I/O
Maximizing CMP Throughput with Mediocre\textsuperscript{1} Cores

- J. Davis, J. Laudon, K. Olukotun PACT '05 paper
- Examined several UltraSPARC II, III, IV, and T1 designs, accounting for differing technologies
- Constructed an area model based on this exploration
- Assumed a fixed-area large die (400 mm\textsuperscript{2}), and accounted for pads, pins, and routing overhead
- Looked at performance for a broad swath of scalar and in-order superscalar processor core designs

\textsuperscript{1} Mediocre: adj. ordinary; of moderate quality, value, ability, or performance
 CMP Design Space

- Large simulation space: 13k runs/benchmark/technology (pruned)
- Fixed die size: number of cores in CMP depends on the core size
Scalar vs. Superscalar Core Area

Threads per Core

Relative Core Area

- 1 IDP
- 2 IDP
- 3 IDP
- 4 IDP
- 2-SS
- 4-SS

1.36 X
1.75 X
1.84 X
1.54 X
Trading complexity, cores and caches

Source: J. Davis, J. Laudon, K. Olukotun, Maximizing CMP Throughput with Medicore Cores, PACT '05
The Scalar CMP Design Space

- High Thread Count, Small L1/L2
- "Mediocre Cores"
- Medium Thread Count, Large L1/L2
- Low Thread Count, Small L1/L2
Limitations of Simple Cores

- Lower SPEC CPU2000 ratio performance
  - Not representative of most single-thread code
  - Abstraction increases frequency of branching and indirection
  - Most applications wait on network, disk, memory; rarely execution units

- Large number of threads per chip
  - 32 for UltraSPARC T1, 100+ threads soon
  - Is software ready for this many threads?
  - Many commercial applications scale well
  - Workload consolidation
Simple core comparison

<table>
<thead>
<tr>
<th>UltraSPARC T1</th>
<th>Pentium Extreme Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>379 mm$^2$</td>
<td>206 mm$^2$</td>
</tr>
</tbody>
</table>
Comparison Disclaimers

- Different design teams and design environments
- Chips fabricated in 90 nm by TI and Intel
- UltraSPARC T1: designed from ground up as a CMP
- Pentium Extreme Edition: two cores bolted together
- Apples to watermelons comparison, but still interesting
## Pentium EE- US T1 Bandwidth Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Pentium Extreme Edition</th>
<th>UltraSPARC T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Speed</td>
<td>3.2 Ghz</td>
<td>1.2 Ghz</td>
</tr>
<tr>
<td>Pipeline Depth</td>
<td>31 stages</td>
<td>6 stages</td>
</tr>
<tr>
<td>Power</td>
<td>130 W (@ 1.3 V)</td>
<td>72W (@ 1.3V)</td>
</tr>
<tr>
<td>Die Size</td>
<td>206 mm²</td>
<td>379 mm²</td>
</tr>
<tr>
<td>Transistor Count</td>
<td>230 million</td>
<td>279 million</td>
</tr>
<tr>
<td>Number of cores</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Number of threads</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>L1 caches</td>
<td>12 kuop Instruction/16 kB Data</td>
<td>16 kB Instruction/8 kB Data</td>
</tr>
<tr>
<td>Load-to-use latency</td>
<td>1.1 ns</td>
<td>2.5 ns</td>
</tr>
<tr>
<td>L2 cache</td>
<td>Two copies of 1 MB, 8-way associative</td>
<td>3 MB, 12-way associative</td>
</tr>
<tr>
<td>L2 unloaded latency</td>
<td>7.5 ns</td>
<td>19 ns</td>
</tr>
<tr>
<td>L2 bandwidth</td>
<td>~180 GB/s</td>
<td>76.8 GB/s</td>
</tr>
<tr>
<td>Memory unloaded latency</td>
<td>80 ns</td>
<td>90 ns</td>
</tr>
<tr>
<td>Memory bandwidth</td>
<td>6.4 GB/s</td>
<td>25.6 GB/s</td>
</tr>
</tbody>
</table>
Sharing Saves Area & Ups Utilization

• Hardware threads within a processor core share:
  > Pipeline and execution units
  > L1 caches, TLBs and load/store port

• Processor cores within a CMP share:
  > L2 and L3 caches
  > Memory and I/O ports

• Increases utilization
  > Multiple threads fill pipeline and overlap memory stalls with computation
  > Multiple cores increase load on L2 and L3 caches and memory
Sharing to save area

• UltraSPARC T1
• Four threads per core
• Multithreading increases:
  > Register file
  > Trap unit
  > Instruction buffers and fetch resources
  > Store queues and miss buffers
• 20% area increase in core excluding cryptography unit
Sharing to increase utilization

UltraSPARC T1 Database App Utilization

- Application run with both 8 and 32 threads
- With 32 threads, pipeline and memory contention slow each thread by 34%
- However, increased utilization leads to 3x speedup with four threads
Keeping the threads fed

- Dedicated resources for thread memory requests
  - Private store buffers and miss buffers
- Large, banked, and highly-associative L2 cache
  - Multiple banks for sufficient bandwidth
  - Increased size and associativity to hold the working sets of multiple threads
- Direct connection to high-bandwidth memory
  - Fallout from shared L2 will be larger than from a private L2
  - But increase in L2 miss rate will be much smaller than increase in number of threads
Keeping the threads cool

• Sharing of resources increases unit utilization and thus leads to increase in power

• Cores must be power efficient
  > Minimal speculation – high-payoff only
  > Moderate pipeline depth and frequency

• Extensive mechanisms for power management
  > Voltage and frequency control
  > Clock gating and unit shutdown
  > Leakage power control
  > Minimizing cache and memory power
Outline

• Server design issues
  > Application demands
  > System requirements
• Building a better server-oriented CMP
  > Maximizing thread count
  > Keeping the threads fed
  > Keeping the threads cool
• UltraSPARC T1 (Niagara)
  > Micro-architecture
  > Performance
  > Power
UltraSPARC T1 Overview

• TLP-focused CMP for servers
  > 32 threads to hide memory and pipeline stalls
• Extensive sharing
  > Four threads share each processor core
  > Eight processor cores share a single L2 cache
• High-bandwidth cache and memory subsystem
  > Banked and highly-associative L2 cache
  > Direct connection to DDR II memory
• Performance/Watt as a design metric
UltraSPARC T1 Block Diagram

Floating Point Unit

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5
Core 6
Core 7

Crossbar

L2 Bank 0
L2 Bank 1
L2 Bank 2
L2 Bank 3

DRAM Control

Channel 0
Channel 1
Channel 2
Channel 3

DDR2 144@400 MT/s
DDR2 144@400 MT/s
DDR2 144@400 MT/s
DDR2 144@400 MT/s

DDR2
DDR2
DDR2
DDR2

JTAG

Clock & Test Unit

Control Register Interface

JBUS System Interface

SSI ROM Interface

JBUS (200 MHz)
SSI (50 MHz)
UltraSPARC T1 Micrograph

Features:
• 8 64-bit Multithreaded SPARC Cores
• Shared 3 MB, 12-way 64B line writeback L2 Cache
• 16 KB, 4-way 32B line ICache per Core
• 8 KB, 4-way 16B line write-through DCache per Core
• 4 144-bit DDR-2 channels
• 3.2 GB/sec JBUS I/O

Technology:
• TI's 90nm CMOS Process
• 9LM Cu Interconnect
• 63 Watts @ 1.2GHz/1.2V
• Die Size: 379mm²
• 279M Transistors
• Flip-chip ceramic LGA
UltraSPARC T1 Floorplanning

- Modular design for “step and repeat”
- Main issue is that all cores want to be close to all the L2 cache banks
  - Crossbar and L2 tags located in the center
  - Processor cores on the top and bottom
  - L2 data on the left and right
  - Memory controllers and SOC fill in the holes
Maximizing Thread Count on US-T1

• Power-efficient, simple cores
  > Six stage pipeline, almost no speculation
  > 1.2 GHz operation
  > Four threads per core
    > Shared: pipeline, L1 caches, TLB, L2 interface
    > Dedicated: register and other architectural state, instruction buffers, 8-entry store buffers
  > Pipeline switches between available threads every cycle (interleaved/vertical multithreading)
  > Cryptography acceleration unit per core
UltraSPARC T1 Pipeline

Fetch → Thrd Sel → Decode → Execute → Memory → WB

- ICache
- Itlb
- Inst buf x 4
- Thrd Sel Mux
- Thread selects
- PC logic x 4
- Thrd Sel Mux
- Regfile x4
- Decode
- Alu Mul Shft Div
- Crossbar Interface
- DCache Dtlb Stbuf x 4
- Instruction type misses
- traps & interrupts
- resource conflicts
Thread Selection: All Threads Ready

Instructions

Cycles
Thread Selection: Two Threads Ready

Thread '0' is speculatively switched in before cache hit information is available, in time for the 'load' to bypass data to the 'add'
Feeding the UltraSPARC T1 Threads

• Shared L2 cache
  > 3 MB, writeback, 12-way associative, 64B lines
  > 4 banks, interleaved on cache line boundary
  > Handles multiple outstanding misses per bank
  > MESI coherence – L2 cache orders all requests
  > Maintains directory and inclusion of L1 caches

• Direct connection to memory
  > Four 144-bit wide (128+16) DDR II interfaces
  > Supports up to 128 GB of memory
  > 25.6 GB/s memory bandwidth
Keeping the US-T1 Threads Cool

- Power efficient cores
  > 1.2 GHz 6-stage single-issue pipeline
- Features to keep peak power close to average
  > Ability to suspend issue from any thread
  > Limit on number of outstanding memory requests
- Extensive clock gating
  > Coarse-grained (unit shutdown, partial activation)
  > Fine-grained (selective gating within datapaths)
- Static design for most of chip
- 63 Watts typical power at 1.2V and 1.2 GHz
UltraSPARC T1 Power Breakdown

63W @ 1.2Ghz / 1.2V

< 2 Watts / Thread

- Fully static design
- Fine granularity clock gating for datapaths (30% flops disabled)
- Lower 1.5 P/N width ratio for library cells
- Interconnect wire classes optimized for power x delay
- SRAM activation control

- SPARC Cores (26%)
- Leakage (25%)
- Crossbar (4%)
- L2 Cache (12%)
- Top Route (16%)
- IOs (11%)
- L2 Data (11%)
- L2 Buff Unit (11%)
- Misc Units (11%)
- Global Clock (11%)
- Floating Point (11%)

63W @ 1.2Ghz / 1.2V

< 2 Watts / Thread
Advantages of CoolThreads™

- No need for exotic cooling technologies
- Improved reliability from lower and more uniform junction temperatures
- Improved performance/reliability tradeoff in design
UltraSPARC T1 System (T1000)
T2000 Power Breakdown

Sun Fire T2000 Power

• 271W running SPECJBB 2000
• Power breakdown
  > 25% processor
  > 22% memory
  > 22% I/O
  > 4% disk
  > 1% service processor
  > 10% fans
  > 15% AC/DC conversion
# UltraSPARC T1 Performance

<table>
<thead>
<tr>
<th>Sun Fire T2000</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CPU</strong></td>
<td>UltraSPARC T1</td>
</tr>
<tr>
<td><strong>Sockets</strong></td>
<td>1</td>
</tr>
<tr>
<td><strong>Height</strong></td>
<td>2U</td>
</tr>
<tr>
<td><strong>SpecWeb 2005</strong></td>
<td><strong>Performance</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Power</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Perf/Watt</strong></td>
</tr>
<tr>
<td><strong>SpecJBB 2005</strong></td>
<td><strong>Performance</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Power</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Perf/Watt</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E10K</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>32 x US2</td>
<td></td>
</tr>
<tr>
<td>77.4 ft³</td>
<td></td>
</tr>
<tr>
<td>2000 lbs</td>
<td></td>
</tr>
<tr>
<td>13,456 W</td>
<td></td>
</tr>
<tr>
<td>52,000 BTUs/hr</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2000</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>1 x US T1</td>
<td></td>
</tr>
<tr>
<td>0.85 ft³</td>
<td></td>
</tr>
<tr>
<td>37 lbs</td>
<td></td>
</tr>
<tr>
<td>~300 W</td>
<td></td>
</tr>
<tr>
<td>1,364 BTUs/hr</td>
<td></td>
</tr>
</tbody>
</table>
Future Trends

• Improved thread performance
  > Deeper pipelines
  > More high-payoff speculation

• Increased number of threads per core

• More of the system components will move on-chip

• Continued focus on delivering high performance/Watt and performance/Watt/Volume (SWaP)
Conclusions

• Server TCO will soon be dominated by power
• Server CMPs need to be designed from ground up to improve performance/Watt
  > Simple MT cores => threads ↑ => performance ↑
  > Lower frequency and less speculation => power ↓
  > Must provide enough bandwidth to keep threads fed
• UltraSPARC T1 employs these principles to deliver outstanding performance and performance/Watt on a broad range of commercial workloads
Legal Disclosures

- SPECweb2005 Sun Fire T2000 (8 cores, 1 chip) 14001 SPECweb2005
- SPEC, SPECweb reg tm of Standard Performance Evaluation Corporation
- Sun Fire T2000 results submitted to SPEC Dec 6th 2005
- Sun Fire T2000 server power consumption taken from measurements made during the benchmark run
- SPECjbb2005 Sun Fire T2000 Server (1 chip, 8 cores, 1-way) 63,378 bops
- SPEC, SPECjbb reg tm of Standard Performance Evaluation Corporation
- Sun Fire T2000 results submitted to SPEC Dec 6th 2005
- Sun Fire T2000 server power consumption taken from measurements made during the benchmark run